skip to main content


Search for: All records

Creators/Authors contains: "Donohue, K."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    The Gulf Stream is the only pathway in the subtropical North Atlantic by which warm water flows poleward. This transport of warm water and return of cold water at depth is called the Atlantic Meridional Overturning Circulation (AMOC). The dynamic method is applied to hydrocasts collected since the 1930s to estimate upper‐ocean transport (0–1,000 m) between the U.S. Continental Slope and Bermuda and separately to Africa with focus on the longest directly observable timescale. Calculating transport between the Slope and Bermuda eliminates the Gulf Stream's northern and southern recirculation gyres, while calculations between the Slope and Africa remove all other recirculating geostrophic flow. The net Slope‐Bermuda upper‐ocean transport is estimated to be 41.1 ± 0.4 Sv, decreasing by 2.0 ± 0.8 Sv between 1930 and 2020. The AMOC contribution is 18.4 ± 0.6 Sv, decreasing by 0.4 ± 0.6 Sv between 1930 and 2020.

     
    more » « less
  2. Abstract

    A scarcity of wintertime observations of surface ocean carbon dioxide partial pressure (pCO2) in and near the Gulf Stream creates uncertainty in the magnitude of the regional carbon sink and its controlling mechanisms. Recent observations from an Uncrewed Surface Vehicle (USV), outfitted with a payload to measure surface ocean and lower atmospherepCO2, revealed sharp gradients in oceanpCO2across the Gulf Stream. Surface oceanpCO2was lower by ∼50 μatm relative to the atmosphere in the subtropical mode water (STMW) formation region. This undersaturation combined with strong wintertime winds allowed for rapid ocean uptake of CO2, averaging −11.5 mmol m−2 day−1during the February 2019 USV mission. The unique timing of this mission revealed active STMW formation. The USV proved to be a useful tool for CO2flux quantification in the poorly observed, dynamic western boundary current environment.

     
    more » « less